Dual function of Swc5 in SWR remodeling ATPase activation and histone H2A eviction

نویسندگان

  • Lu Sun
  • Ed Luk
چکیده

The chromatin remodeler SWR deposits histone H2A.Z at promoters and other regulatory sites via an ATP-driven histone exchange reaction that replaces nucleosomal H2A with H2A.Z. Simultaneous binding of SWR to both H2A nucleosome and free H2A.Z induces SWR ATPase activity and engages the histone exchange mechanism. Swc5 is a conserved subunit of the 14-polypeptide SWR complex that is required for the histone exchange reaction, but its molecular role is unknown. We found that Swc5, although not required for substrate binding, is required for SWR ATPase stimulation, suggesting that Swc5 is required to couple substrate recognition to ATPase activation. A biochemical complementation assay was developed to show that a unique, conserved domain at the C-terminus of Swc5, called Bucentaur (BCNT), is essential for the histone exchange activity of SWR, whereas an acidic region at the N-terminus is required for optimal SWR function. In vitro studies showed the acidic N-terminus of Swc5 preferentially binds to the H2A-H2B dimer and exhibits histone chaperone activity. We propose that an auxiliary function of Swc5 in SWR is to assist H2A ejection as H2A.Z is inserted into the nucleosome.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stepwise Histone Replacement by SWR1 Requires Dual Activation with Histone H2A.Z and Canonical Nucleosome

Histone variant H2A.Z-containing nucleosomes are incorporated at most eukaryotic promoters. This incorporation is mediated by the conserved SWR1 complex, which replaces histone H2A in canonical nucleosomes with H2A.Z in an ATP-dependent manner. Here, we show that promoter-proximal nucleosomes are highly heterogeneous for H2A.Z in Saccharomyces cerevisiae, with substantial representation of nucl...

متن کامل

Chromatin dynamics

*Correspondence to: Craig L Peterson; Email: [email protected] Submitted: 06/03/2013; Accepted: 06/03/2013 http://dx.doi.org/10.4161/cc.25704 Comment on: Watanabe S, et al. Science 2013; 340:195-9; PMID:23580526; http://dx.doi.org/10.1126/science.1229758 Organization of eukaryotic genomes into compact, nucleoprotein fibers is key for stuffing a lot of DNA into a tiny nucleus, but thes...

متن کامل

Yeast G1 DNA damage checkpoint regulation by H2A phosphorylation is independent of chromatin remodeling.

Recent studies of yeast G1 DNA damage response have identified characteristic changes in chromatin adjacent to double-strand breaks (DSBs). Histone H2A (yeast H2AX) is rapidly phosphorylated on S129 by the kinase Tel1 (ATM) over a domain extending kilobases from the DSB. The adaptor protein Rad9 (53BP1) is recruited to this chromatin domain through binding of its tudor domains to histone H3 diM...

متن کامل

A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1.

Deletions of three yeast genes, SET2, CDC73, and DST1, involved in transcriptional elongation and/or chromatin metabolism were used in conjunction with genetic array technology to screen approximately 4700 yeast deletions and identify double deletion mutants that produce synthetic growth defects. Of the five deletions interacting genetically with all three starting mutations, one encoded the hi...

متن کامل

Comment on "A histone acetylation switch regulates H2A.Z deposition by the SWR-C remodeling enzyme".

Watanabe et al (Reports, 12 April 2013, p. 195) study the yeast SWR1/SWR-C complex responsible for depositing the histone variant H2A.Z by replacing nucleosomal H2A with H2A.Z. They report that reversal of H2A.Z replacement is mediated by SWR1 and related INO80 on an H2A.Z nucleosome carrying H3K56Q. Using multiple assays and reaction conditions, we find no evidence of such reversal of H2A.Z ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2017